
PreviousNext
We present a new algorithm for solving homogeneous multilinear equations, which are high dimensional generalisations of solving homogeneous linear equations. First, we present a linear time reduction from solving generic homogeneous multilinear equations to computing hyperdeterminants, via a high dimensional Cramer's rule. Hyperdeterminants are generalisations of determinants, associated with tensors ... more >>>
Consider the model where we can access a parity function through random uniform labeled examples in the presence of random classification noise. In this paper, we show that approximating the number of relevant variables in the parity function is as hard as properly learning parities.
More specifically, let $\gamma:{\mathbb R}^+\to ... more >>>
A central open question within meta-complexity is that of NP-hardness of problems such as MCSP and MK$^t$P. Despite a large body of work giving consequences of and barriers for NP-hardness of these problems under (restricted) deterministic reductions, very little is known in the setting of randomized reductions. In this work, ... more >>>
PreviousNext