
PreviousNext
We investigate the autoreducibility and mitoticity of complete sets for several classes with respect to different polynomial-time and logarithmic-space reducibility notions.
Previous work in this area focused on polynomial-time reducibility notions. Here we obtain new mitoticity and autoreducibility results for the classes EXP and NEXP with respect to some restricted ... more >>>
We construct a new list-decodable family of asymptotically good algebraic-geometric (AG) codes over fixed alphabets. The function fields underlying these codes are constructed using class field theory, specifically Drinfeld modules of rank $1$, and designed to have an automorphism of large order that is used to ``fold" the AG code. ... more >>>
In this paper, we study the approximability of the metric Traveling Salesman Problem, one of the most widely studied problems in combinatorial optimization. Currently, the best known hardness of approximation bounds are 185/184 for the symmetric case (due to Lampis) and 117/116 for the asymmetric case (due to Papadimitriou and ... more >>>
PreviousNext