Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR13-029 | 19th February 2013
C. Seshadhri, Deeparnab Chakrabarty

A {\huge ${o(n)}$} monotonicity tester for Boolean functions over the hypercube

Revisions: 1

Given oracle access to a Boolean function $f:\{0,1\}^n \mapsto \{0,1\}$, we design a randomized tester that takes as input a parameter $\eps>0$, and outputs {\sf Yes} if the function is monotone, and outputs {\sf No} with probability $>2/3$, if the function is $\eps$-far from monotone. That is, $f$ needs to ... more >>>


TR13-028 | 14th February 2013
Mrinal Kumar, Gaurav Maheshwari, Jayalal Sarma

Arithmetic Circuit Lower Bounds via MaxRank

We introduce the polynomial coefficient matrix and identify maximum rank of this matrix under variable substitution as a complexity measure for multivariate polynomials. We use our techniques to prove
super-polynomial lower bounds against several classes of non-multilinear arithmetic circuits. In particular, we obtain the following results :

$\bullet$ As ... more >>>


TR13-027 | 29th January 2013
Luke Friedman

A Framework for Proving Proof Complexity Lower Bounds on Random CNFs Using Encoding Techniques

Propositional proof complexity is an area of complexity theory that addresses the question of whether the class NP is closed under complement, and also provides a theoretical framework for studying practical applications such as SAT solving.
Some of the most well-studied contradictions are random $k$-CNF formulas where each clause of ... more >>>



previous PreviousNext next


ISSN 1433-8092 | Imprint