Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR23-203 | 15th December 2023
Hamed Hatami, Kaave Hosseini, Shachar Lovett, Anthony Ostuni

Refuting approaches to the log-rank conjecture for XOR functions

The log-rank conjecture, a longstanding problem in communication complexity, has persistently eluded resolution for decades. Consequently, some recent efforts have focused on potential approaches for establishing the conjecture in the special case of XOR functions, where the communication matrix is lifted from a boolean function, and the rank of ... more >>>


TR23-202 | 15th December 2023
C Ramya, Pratik Shastri

Lower Bounds for Planar Arithmetic Circuits

Arithmetic circuits are a natural well-studied model for computing multivariate polynomials over a field. In this paper, we study planar arithmetic circuits. These are circuits whose underlying graph is planar. In particular, we prove an $\Omega(n\log n)$ lower bound on the size of planar arithmetic circuits computing explicit bilinear forms ... more >>>


TR23-201 | 16th October 2023
Alexander Shekhovtsov, Georgii Zakharov

Enumerating Complexity Revisited

We reduce the best-known upper bound on the length of a program that enumerates a set in terms of the probability of it being enumerated by a random program. We prove a general result that any linear upper bound for finite sets implies the same linear bound for infinite sets.

... more >>>


previous PreviousNext next


ISSN 1433-8092 | Imprint