Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR10-184 | 19th November 2010
Manjish Pal

Combinatorial Geometry of Graph Partitioning - I

The {\sc $c$-Balanced Separator} problem is a graph-partitioning problem in which given a graph $G$, one aims to find a cut of minimum size such that both the sides of the cut have at least $cn$ vertices. In this paper, we present new directions of progress in the {\sc $c$-Balanced ... more >>>


TR10-182 | 26th November 2010
Shachar Lovett

An elementary proof of anti-concentration of polynomials in Gaussian variables

Recently there has been much interest in polynomial threshold functions in the context of learning theory, structural results and pseudorandomness. A crucial ingredient in these works is the understanding of the distribution of low-degree multivariate polynomials evaluated over normally distributed inputs. In particular, the two important properties are exponential tail ... more >>>


TR10-181 | 21st November 2010
Hamed Hatami, Shachar Lovett

Higher-order Fourier analysis of $\mathbb{F}_p^n$ and the complexity of systems of linear forms

In this article we are interested in the density of small linear structures (e.g. arithmetic progressions) in subsets $A$ of the group $\mathbb{F}_p^n$. It is possible to express these densities as certain analytic averages involving $1_A$, the indicator function of $A$. In the higher-order Fourier analytic approach, the function $1_A$ ... more >>>



previous PreviousNext next


ISSN 1433-8092 | Imprint