Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR11-088 | 7th June 2011
Pavel Hrubes

How much commutativity is needed to prove polynomial identities?

Let $f$ be a non-commutative polynomial such that $f=0$ if we assume that the variables in $f$ commute. Let $Q(f)$ be the smallest $k$ such that there exist polynomials $g_1,g_1', g_2, g_2',\dots, g_k, g_k' $ with \[f\in I([g_1,g_1'], [g_2, g_2'],\dots, [g_k, g_k'] )\,,\]
where $[g,h]=gh-hg$. Then $Q(f)\leq {n\choose 2}$, where ... more >>>


TR11-087 | 3rd June 2011
Michael Viderman

A Combination of Testability and Decodability by Tensor Products

Revisions: 3

Ben-Sasson and Sudan (RSA 2006) showed that repeated tensor products of linear codes with a very large distance are locally testable. Due to the requirement of a very large distance the associated tensor products could be applied only over sufficiently large fields. Then Meir (SICOMP 2009) used this result (as ... more >>>


TR11-086 | 2nd June 2011
Masaki Yamamoto

A tighter lower bound on the circuit size of the hardest Boolean functions

In [IPL2005],
Frandsen and Miltersen improved bounds on the circuit size $L(n)$ of the hardest Boolean function on $n$ input bits:
for some constant $c>0$:
\[
\left(1+\frac{\log n}{n}-\frac{c}{n}\right)
\frac{2^n}{n}
\leq
L(n)
\leq
\left(1+3\frac{\log n}{n}+\frac{c}{n}\right)
\frac{2^n}{n}.
\]
In this note,
we announce a modest ... more >>>



previous PreviousNext next


ISSN 1433-8092 | Imprint