Loading jsMath...
Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR23-202 | 15th December 2023
C Ramya, Pratik Shastri

Lower Bounds for Planar Arithmetic Circuits

Arithmetic circuits are a natural well-studied model for computing multivariate polynomials over a field. In this paper, we study planar arithmetic circuits. These are circuits whose underlying graph is planar. In particular, we prove an \Omega(n\log n) lower bound on the size of planar arithmetic circuits computing explicit bilinear forms ... more >>>


TR23-201 | 16th October 2023
Alexander Shekhovtsov, Georgii Zakharov

Enumerating Complexity Revisited

We reduce the best-known upper bound on the length of a program that enumerates a set in terms of the probability of it being enumerated by a random program. We prove a general result that any linear upper bound for finite sets implies the same linear bound for infinite sets.

... more >>>

TR23-200 | 6th December 2023
Joseph Shunia

An Efficient Deterministic Primality Test

Revisions: 1 , Comments: 4

A deterministic primality test with a polynomial time complexity of \tilde{O}(\log^3(n)) is presented. The test posits that an integer n satisfying the conditions of the main theorem is prime. Combining elements of number theory and combinatorics, the proof operates on the basis of simultaneous modular congruences relating to binomial transforms ... more >>>



previous PreviousNext next


ISSN 1433-8092 | Imprint