
PreviousNext
Sublinear time algorithms represent a new paradigm
in computing, where an algorithm must give some sort
of an answer after inspecting only a very small portion
of the input. We discuss the types of answers that
one can hope to achieve in this setting.
We establish new hardness amplification results for one-way functions in which each input bit influences only a small number of output bits (a.k.a. input-local functions). Our transformations differ from previous ones in that they approximately preserve input locality and at the same time retain the input size of the original ... more >>>
We study the communication complexity of symmetric XOR functions, namely functions $f: \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}$ that can be formulated as $f(x,y)=D(|x\oplus y|)$ for some predicate $D: \{0,1,...,n\} \rightarrow \{0,1\}$, where $|x\oplus y|$ is the Hamming weight of the bitwise XOR of $x$ and $y$. We give a public-coin ... more >>>
PreviousNext