Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR11-001 | 2nd January 2011
Scott Aaronson

Impossibility of Succinct Quantum Proofs for Collision-Freeness

We show that any quantum algorithm to decide whether a function $f:\left[n\right] \rightarrow\left[ n\right] $ is a permutation or far from a permutation\ must make $\Omega\left( n^{1/3}/w\right) $ queries to $f$, even if the algorithm is given a $w$-qubit quantum witness in support of $f$ being a permutation. This implies ... more >>>


TR10-202 | 9th December 2010
Bin Fu

Multivariate Polynomial Integration and Derivative Are Polynomial Time Inapproximable unless P=NP

We investigate the complexity of integration and
derivative for multivariate polynomials in the standard computation
model. The integration is in the unit cube $[0,1]^d$ for a
multivariate polynomial, which has format
$f(x_1,\cdots,
x_d)=p_1(x_1,\cdots, x_d)p_2(x_1,\cdots, x_d)\cdots p_k(x_1,\cdots,
x_d)$,
where each $p_i(x_1,\cdots, x_d)=\sum_{j=1}^d q_j(x_j)$ with
all single variable polynomials $q_j(x_j)$ ... more >>>


TR10-201 | 21st December 2010
Samir Datta, Raghav Kulkarni, Raghunath Tewari

Perfect Matching in Bipartite Planar Graphs is in UL

Revisions: 1

We prove that Perfect Matching in bipartite planar graphs is in UL, improving upon
the previous bound of SPL (see [DKR10]) on its space complexity. We also exhibit space
complexity bounds for some related problems. Summarizing, we show that, constructing:
1. a Perfect Matching in bipartite planar graphs is in ... more >>>



previous PreviousNext next


ISSN 1433-8092 | Imprint