Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR24-062 | 5th April 2024
Omar Alrabiah, Venkatesan Guruswami

Near-Tight Bounds for 3-Query Locally Correctable Binary Linear Codes via Rainbow Cycles

Revisions: 1

We prove that a binary linear code of block length $n$ that is locally correctable with $3$ queries against a fraction $\delta > 0$ of adversarial errors must have dimension at most $O_{\delta}(\log^2 n \cdot \log \log n)$. This is almost tight in view of quadratic Reed-Muller codes being a ... more >>>


TR24-061 | 5th April 2024
Divesh Aggarwal, Pranjal Dutta, Zeyong Li, Maciej Obremski, Sidhant Saraogi

Improved Lower Bounds for 3-Query Matching Vector Codes

Revisions: 1

A Matching Vector ($\mathbf{MV}$) family modulo a positive integer $m \ge 2$ is a pair of ordered lists $\mathcal{U} = (\mathbf{u}_1, \cdots, \mathbf{u}_K)$ and $\mathcal{V} = (\mathbf{v}_1, \cdots, \mathbf{v}_K)$ where $\mathbf{u}_i, \mathbf{v}_j \in \mathbb{Z}_m^n$ with the following property: for any $i \in [K]$, the inner product $\langle \mathbf{u}_i, \mathbf{v}_i \rangle ... more >>>


TR24-060 | 4th April 2024
Lijie Chen, Jiatu Li, Igor Carboni Oliveira

Reverse Mathematics of Complexity Lower Bounds

Reverse mathematics is a program in mathematical logic that seeks to determine which axioms are necessary to prove a given theorem. In this work, we systematically explore the reverse mathematics of complexity lower bounds. We explore reversals in the setting of bounded arithmetic, with Cook's theory $\mathbf{PV}_1$ as the base ... more >>>



previous PreviousNext next


ISSN 1433-8092 | Imprint