Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR08-005 | 15th January 2008
Scott Aaronson, Avi Wigderson

Algebrization: A New Barrier in Complexity Theory

Any proof of P!=NP will have to overcome two barriers: relativization
and natural proofs. Yet over the last decade, we have seen circuit
lower bounds (for example, that PP does not have linear-size circuits)
that overcome both barriers simultaneously. So the question arises of
whether there ... more >>>


TR08-004 | 2nd January 2008
Zeev Dvir, Amir Shpilka

Noisy Interpolating Sets for Low Degree Polynomials

A Noisy Interpolating Set (NIS) for degree $d$ polynomials is a
set $S \subseteq \F^n$, where $\F$ is a finite field, such that
any degree $d$ polynomial $q \in \F[x_1,\ldots,x_n]$ can be
efficiently interpolated from its values on $S$, even if an
adversary corrupts a constant fraction of the values. ... more >>>


TR08-003 | 25th December 2007
Troy Lee, Adi Shraibman

Disjointness is hard in the multi-party number-on-the-forehead model

We show that disjointness requires randomized communication
Omega(\frac{n^{1/2k}}{(k-1)2^{k-1}2^{2^{k-1}}})
in the general k-party number-on-the-forehead model of complexity.
The previous best lower bound was Omega(\frac{log n}{k-1}). By
results of Beame, Pitassi, and Segerlind, this implies
2^{n^{Omega(1)}} lower bounds on the size of tree-like Lovasz-Schrijver
proof systems needed to refute certain unsatisfiable ... more >>>



previous PreviousNext next


ISSN 1433-8092 | Imprint