Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR07-123 | 21st November 2007
Shachar Lovett, Roy Meshulam, Alex Samorodnitsky

Inverse Conjecture for the Gowers norm is false

Revisions: 2


Let $p$ be a fixed prime number, and $N$ be a large integer.
The 'Inverse Conjecture for the Gowers norm' states that if the "$d$-th Gowers norm" of a function $f:\F_p^N \to \F_p$ is non-negligible, that is larger than a constant independent of $N$, then $f$ can be non-trivially ... more >>>


TR07-122 | 22nd November 2007
Zeev Dvir, Amir Shpilka

Towards Dimension Expanders Over Finite Fields

In this paper we study the problem of explicitly constructing a
{\em dimension expander} raised by \cite{BISW}: Let $\mathbb{F}^n$
be the $n$ dimensional linear space over the field $\mathbb{F}$.
Find a small (ideally constant) set of linear transformations from
$\F^n$ to itself $\{A_i\}_{i \in I}$ such that for every linear
more >>>


TR07-121 | 21st November 2007
Zeev Dvir, Amir Shpilka, Amir Yehudayoff

Hardness-Randomness Tradeoffs for Bounded Depth Arithmetic Circuits

In this paper we show that lower bounds for bounded depth arithmetic circuits imply derandomization of polynomial identity testing for bounded depth arithmetic circuits. More formally, if there exists an explicit polynomial f(x_1,...,x_m) that cannot be computed by a depth d arithmetic circuit of small size then there exists ... more >>>



previous PreviousNext next


ISSN 1433-8092 | Imprint