
PreviousNext
We give an explicit construction of pseudorandom
generators against low degree polynomials over finite fields. We
show that the sum of $2^d$ small-biased generators with error
$\epsilon^{2^{O(d)}}$ is a pseudorandom generator against degree $d$
polynomials with error $\epsilon$. This gives a generator with seed
length $2^{O(d)} \log{(n/\epsilon)}$. Our construction follows ...
more >>>
We give the first exponential separation between quantum and
classical multi-party
communication complexity in the (non-interactive) one-way and
simultaneous message
passing settings.
For every k, we demonstrate a relational communication problem
between k parties
that can be solved exactly by a quantum simultaneous message passing
protocol of
cost ...
more >>>
We study the polynomial reconstruction problem for low-degree
multivariate polynomials over finite fields. In the GF[2] version of this problem, we are given a set of points on the hypercube and target values $f(x)$ for each of these points, with the promise that there is a polynomial over GF[2] of ...
more >>>
PreviousNext