The Parameterized Inapproximability Hypothesis (PIH) is the analog of the PCP theorem in the world of parameterized complexity. It asserts that no FPT algorithm can distinguish a satisfiable 2CSP instance from one which is only $(1-\varepsilon)$-satisfiable (where the parameter is the number of variables) for some constant $0<\varepsilon<1$.
We ... more >>>
We study a natural complexity measure of Boolean functions known as the (exact) rational degree. For total functions $f$, it is conjectured that $\mathrm{rdeg}(f)$ is polynomially related to $\mathrm{deg}(f)$, where $\mathrm{deg}(f)$ is the Fourier degree. Towards this conjecture, we show that symmetric functions have rational degree at least $\mathrm{deg}(f)/2$ and ... more >>>
In this paper, we study the problem of computing the majority function by low-depth monotone circuits and a related problem of constructing low-depth sorting networks. We consider both the classical setting with elementary operations of arity $2$ and the generalized setting with operations of arity $k$, where $k$ is a ... more >>>