Under the assumption that NP does not have p-measure 0, we
investigate reductions to NP-complete sets and prove the following:
- Adaptive reductions are more powerful than nonadaptive
reductions: there is a problem that is Turing-complete for NP but
not truth-table-complete.
- Strong nondeterministic reductions are more powerful ... more >>>
We use entropy rates and Schur concavity to prove that, for every integer k >= 2, every nonzero rational number q, and every real number alpha, the base-k expansions of alpha, q+alpha, and q*alpha all have the same finite-state dimension and the same finite-state strong dimension. This extends, and gives ... more >>>
While the 3-dimensional analogue of the Sperner problem in the plane was known to be PPAD-complete, the complexity of the 2D-SPERNER itself is not known to be PPAD-complete or not. In this paper, we settle this open problem proposed by Papadimitriou~\cite{PAP90} fifteen years ago. This also allows us to derive ... more >>>