
PreviousNext
We demonstrate an \emph{average-case} problem which is as hard as
finding $\gamma(n)$-approximate shortest vectors in certain
$n$-dimensional lattices in the \emph{worst case}, where $\gamma(n)
= O(\sqrt{\log n})$. The previously best known factor for any class
of lattices was $\gamma(n) = \tilde{O}(n)$.
To obtain our ... more >>>
We investigate the computational complexity of finding an element of
a permutation group~$H\subseteq S_n$ with a minimal distance to a
given~$\pi\in S_n$, for different metrics on~$S_n$. We assume
that~$H$ is given by a set of generators, such that the problem
cannot be solved in polynomial time ...
more >>>
We develop the theory of holographic algorithms. We give
characterizations of algebraic varieties of realizable
symmetric generators and recognizers on the basis manifold,
and a polynomial time decision algorithm for the
simultaneous realizability problem.
Using the general machinery we are able to give
unexpected holographic algorithms for
some counting problems, ...
more >>>
PreviousNext