Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR06-147 | 27th November 2006
Chris Peikert, Alon Rosen

Lattices that Admit Logarithmic Worst-Case to Average-Case Connection Factors

Revisions: 1

We demonstrate an \emph{average-case} problem which is as hard as
finding $\gamma(n)$-approximate shortest vectors in certain
$n$-dimensional lattices in the \emph{worst case}, where $\gamma(n)
= O(\sqrt{\log n})$. The previously best known factor for any class
of lattices was $\gamma(n) = \tilde{O}(n)$.

To obtain our ... more >>>


TR06-146 | 30th September 2006
Christoph Buchheim, Peter J Cameron, Taoyang Wu

On the Subgroup Distance Problem

We investigate the computational complexity of finding an element of
a permutation group~$H\subseteq S_n$ with a minimal distance to a
given~$\pi\in S_n$, for different metrics on~$S_n$. We assume
that~$H$ is given by a set of generators, such that the problem
cannot be solved in polynomial time ... more >>>


TR06-145 | 1st December 2006
Jin-Yi Cai, Pinyan Lu

Holographic Algorithms: From Art to Science

We develop the theory of holographic algorithms. We give
characterizations of algebraic varieties of realizable
symmetric generators and recognizers on the basis manifold,
and a polynomial time decision algorithm for the
simultaneous realizability problem.
Using the general machinery we are able to give
unexpected holographic algorithms for
some counting problems, ... more >>>



previous PreviousNext next


ISSN 1433-8092 | Imprint