Clique-width is a graph parameter that measures in a certain sense the
complexity of a graph. Hard graph problems (e.g., problems
expressible in Monadic Second Order Logic with second-order
quantification on vertex sets, that includes NP-hard problems) can be
solved efficiently for graphs of certified small clique-width. It is
widely ...
more >>>
Clique-width is a graph parameter, defined by a composition mechanism
for vertex-labeled graphs, which measures in a certain sense the
complexity of a graph. Hard graph problems (e.g., problems
expressible in Monadic Second Order Logic, that includes NP-hard
problems) can be solved efficiently for graphs of certified small
clique-width. It ...
more >>>
The \emph{replication number} of a branching program is the minimum
number R such that along every accepting computation at most R
variables are tested more than once. Hence 0\leq R\leq n for every
branching program in n variables. The best results so far were
exponential ...
more >>>