We study the compression of polynomially samplable sources. In particular, we give efficient prefix-free compression and decompression algorithms for three classes of such sources (whose support is a subset of {0,1}^n).
1. We show how to compress sources X samplable by logspace machines to expected length H(X)+O(1).
Our next ... more >>>
We show the following results regarding complete sets:
NP-complete sets and PSPACE-complete sets are many-one
autoreducible.
Complete sets of any level of PH, MODPH, or
the Boolean hierarchy over NP are many-one autoreducible.
EXP-complete sets are many-one mitotic.
NEXP-complete sets are weakly many-one mitotic.
PSPACE-complete sets are weakly Turing-mitotic.
... more >>>We constructively prove the existence of almost complete problems under logspace manyone reduction for some small complexity classes by exhibiting a parametrizable construction which yields, when appropriately setting the parameters, an almost complete problem for PSPACE, the class of space efficiently decidable problems, and for SUBEXP, the class of problems ... more >>>