We study the complexity of the isomorphism and automorphism problems for finite rings with unity.
We show that both integer factorization and graph isomorphism reduce to the problem of counting
automorphisms of rings. The problem is shown to be in the complexity class $\AM \cap co\AM$
and hence ...
more >>>
We show that ACC^0 is precisely what can be computed with constant-width circuits of polynomial size and polylogarithmic genus. This extends a characterization given by Hansen, showing that planar constant-width circuits also characterize ACC^0. Thus polylogarithmic genus provides no additional computational power in this model.
We consider other generalizations of ...
more >>>
It is well known that the hardest bit of integer multiplication is the middle bit, i.e. MUL_{n-1,n}.
This paper contains several new results on its complexity.
First, the size s of randomized read-k branching programs, or, equivalently, its space (log s) is investigated.
A randomized algorithm for MUL_{n-1,n} with k=O(log ...
more >>>