Let $p(x_1,...,x_n) =\sum_{ (r_1,...,r_n) \in I_{n,n} } a_{(r_1,...,r_n) } \prod_{1 \leq i \leq n} x_{i}^{r_{i}}$
be homogeneous polynomial of degree $n$ in $n$ real variables with integer nonnegative coefficients.
The support of such polynomial $p(x_1,...,x_n)$
is defined as $supp(p) = \{(r_1,...,r_n) \in I_{n,n} : a_{(r_1,...,r_n)} \neq 0 ...
more >>>
In this note we revisit the construction of high noise, almost
optimal rate list decodable code of Guruswami ("Better extractors for better codes?")
Guruswami showed that based on optimal extractors one can build a
$(1-\epsilon,O({1 \over \epsilon}))$ list decodable codes of rate
$\Omega({\epsilon \over {log{1 \over \epsilon}}})$ and alphabet
size ...
more >>>
In general property testing, we are given oracle access to a function $f$, and we wish to randomly test if the function satisfies a given property $P$, or it is $\epsilon$-far from having that property. In a more general setting, the domain on which the function is defined is equipped ... more >>>