In this paper, we use resource-bounded dimension theory to investigate polynomial size circuits. We show that for every $i\geq 0$, $\Ppoly$ has $i$th order scaled $\pthree$-strong dimension $0$. We also show that $\Ppoly^\io$ has $\pthree$-dimension $1/2$, $\pthree$-strong dimension $1$. Our results improve previous measure results of Lutz (1992) and dimension ... more >>>
We continue the investigation of locally testable codes, i.e.,
error-correcting codes for whom membership of a given word in the
code can be tested probabilistically by examining it in very few
locations. We give two general results on local testability:
First, motivated by the recently proposed notion of robust
probabilistically ...
more >>>
A strong direct product theorem says that if we want to compute
k independent instances of a function, using less than k times
the resources needed for one instance, then our overall success
probability will be exponentially small in k.
We establish such theorems for the classical as well as ...
more >>>