
PreviousNext
We exhibit an explicitly computable `pseudorandom' generator stretching $l$ bits into $m(l) = l^{\Omega(\log l)}$ bits that look random to constant-depth circuits of size $m(l)$ with $\log m(l)$ arbitrary symmetric gates (e.g. PARITY, MAJORITY). This improves on a generator by Luby, Velickovic and Wigderson (ISTCS '93) that achieves the same ... more >>>
We show that RL is contained in L/O(n), i.e., any language computable
in randomized logarithmic space can be computed in deterministic
logarithmic space with a linear amount of non-uniform advice. To
prove our result we show how to take an ultra-low space walk on
the Gabber-Galil expander graph.
The Local Search problem, which finds a
local minimum of a black-box function on a given graph, is of both
practical and theoretical importance to many areas in computer
science and natural sciences. In this paper, we show that for the
Boolean hypercube $\B^n$, the randomized query complexity of Local
more >>>
PreviousNext