We show that the asymmetric $k$-center problem is
$\Omega(\log^* n)$-hard to approximate unless
${\rm NP} \subseteq {\rm DTIME}(n^{poly(\log \log n)})$.
Since an $O(\log^* n)$-approximation algorithm is known
for this problem, this essentially resolves the approximability
of this problem. This is the first natural problem
whose approximability threshold does not polynomially ...
more >>>
We present a novel technique, based on the Jensen-Shannon divergence
from information theory, to prove lower bounds on the query complexity
of sampling algorithms that approximate functions over arbitrary
domain and range. Unlike previous methods, our technique does not
use a reduction from a binary decision problem, but rather ...
more >>>
The elimination
problem is classical:
implicitly express one of the variables occurring in a finite
system of polynomial equations as an algebraic function of a
designated subset of the remaining variables. Solutions to this
problem by resultants, or more comprehensively by
use of Gr\"{o}bner basis methods are available. In this ...
more >>>