
PreviousNext
A strong direct product theorem says that if we want to compute
k independent instances of a function, using less than k times
the resources needed for one instance, then our overall success
probability will be exponentially small in k.
We establish such theorems for the classical as well as ...
more >>>
We investigate the question of whether one can characterize complexity
classes (such as PSPACE or NEXP) in terms of efficient
reducibility to the set of Kolmogorov-random strings R_C.
We show that this question cannot be posed without explicitly dealing
with issues raised by the choice of universal
machine in the ...
more >>>
Error-correcting codes and related combinatorial constructs
play an important role in several recent (and old) results
in computational complexity theory. In this paper we survey
results on locally-testable and locally-decodable error-correcting
codes, and their applications to complexity theory and to
cryptography.
Locally decodable codes are error-correcting codes ... more >>>
PreviousNext