
PreviousNext
We derive the first lower bound results on kernel sizes of parameterized problems. The same idea also allows us to sometimes "de-parameterize"
parameterized algorithms.
Although a quantum state requires exponentially many classical bits to describe, the laws of quantum mechanics impose severe restrictions on how that state can be accessed. This paper shows in three settings that quantum messages have only limited advantages over classical ones.
First, we show that BQP/qpoly is contained in ...
more >>>
The Turing and many-one completeness notions for $\NP$ have been
previously separated under {\em measure}, {\em genericity}, and {\em
bi-immunity} hypotheses on NP. The proofs of all these results rely
on the existence of a language in NP with almost everywhere hardness.
In this paper we separate the same NP-completeness ... more >>>
PreviousNext