We investigate the decoding problem of Reed-Solomon Codes (aka: the Polynomial Reconstruction Problem -- PR) from a cryptographic hardness perspective. First, following the standard methodology for constructing cryptographically strong primitives, we formulate a decisional intractability assumption related to the PR problem. Then, based on this assumption we show: (i) hardness ... more >>>
We investigate the complexity of enumerative approximation of
two elementary problems in linear algebra, computing the rank
and the determinant of a matrix. In particular, we show that
if there exists an enumerator that, given a matrix, outputs a
list of constantly many numbers, one of which is guaranteed to
more >>>
We use Lutz's resource bounded measure theory to prove that either \tbf{RP} is
small or \tbf{ZPP} is hard. More precisely we prove that if \tbf{RP} has not p-measure zero, then \tbf{EXP} is contained
in $\mbf{ZPP}/n$.
We also show that if \tbf{RP} has not p-measure zero,
\tbf{EXP} equals ...
more >>>