Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR01-089 | 29th October 2001
Andrej Muchnik, Nikolay Vereshchagin

Logical operations and Kolmogorov complexity. II

We invistigate what is the minimal length of
a program mapping A to B and at the same time
mapping C to D (where A,B,C,D are binary strings). We prove that
it cannot be expressed
in terms of Kolmogorv complexity of A,B,C,D, their pairs (A,B), (A,C),
..., their ... more >>>


TR01-088 | 29th October 2001
Alexander Shen, Nikolay Vereshchagin

Logical operations and Kolmogorov complexity

We define Kolmogorov complexity of a set of strings as the minimal
Kolmogorov complexity of its element. Consider three logical
operations on sets going back to Kolmogorov
and Kleene:
(A OR B) is the direct sum of A,B,
(A AND B) is the cartesian product of A,B,
more >>>


TR01-087 | 29th October 2001
Bruno Durand, Alexander Shen, Nikolay Vereshchagin

Descriptive complexity of computable sequences

We study different notions of descriptive complexity of
computable sequences. Our main result states that if for almost all
n the Kolmogorov complexity of the n-prefix of an infinite
binary sequence x conditional to n
is less than m then there is a program of length
m^2+O(1) that for ... more >>>



previous PreviousNext next


ISSN 1433-8092 | Imprint