Given a sequence of $N$ independent sources $\mathbf{X}_1,\mathbf{X}_2,\dots,\mathbf{X}_N\sim\{0,1\}^n$, how many of them must be good (i.e., contain some min-entropy) in order to extract a uniformly random string? This question was first raised by Chattopadhyay, Goodman, Goyal and Li (STOC '20), motivated by applications in cryptography, distributed computing, and the unreliable ... more >>>
A generalized polymorphism of a predicate $P \subseteq \{0,1\}^m$ is a tuple of functions $f_1,\dots,f_m\colon \{0,1\}^n \to \{0,1\}$ satisfying the following property: If $x^{(1)},\dots,x^{(m)} \in \{0,1\}^n$ are such that $(x^{(1)}_i,\dots,x^{(m)}_i) \in P$ for all $i$, then also $(f_1(x^{(1)}),\dots,f_m(x^{(m)})) \in P$.
We show that if $f_1,\dots,f_m$ satisfy this property for most ... more >>>
Lifting theorems are one of the most powerful tools for proving communication complexity lower bounds, with numerous downstream applications in proof complexity, monotone circuit lower bounds, data structures, and combinatorial optimization. However, to the best of our knowledge, prior lifting theorems have primarily focused on the two-party communication.
In this ... more >>>