Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR23-204 | 17th November 2023
John Bostanci, Luowen Qian, Nicholas Spooner, Henry Yuen

An efficient quantum parallel repetition theorem and applications

Revisions: 1

We prove a tight parallel repetition theorem for 3-message computationally-secure quantum interactive protocols between an efficient challenger and an efficient adversary. We also prove under plausible assumptions that the security of 4-message computationally secure protocols does not generally decrease under parallel repetition. These mirror the classical results of Bellare, Impagliazzo, ... more >>>


TR23-203 | 15th December 2023
Hamed Hatami, Kaave Hosseini, Shachar Lovett, Anthony Ostuni

Refuting approaches to the log-rank conjecture for XOR functions

The log-rank conjecture, a longstanding problem in communication complexity, has persistently eluded resolution for decades. Consequently, some recent efforts have focused on potential approaches for establishing the conjecture in the special case of XOR functions, where the communication matrix is lifted from a boolean function, and the rank of ... more >>>


TR23-202 | 15th December 2023
C Ramya, Pratik Shastri

Lower Bounds for Planar Arithmetic Circuits

Arithmetic circuits are a natural well-studied model for computing multivariate polynomials over a field. In this paper, we study planar arithmetic circuits. These are circuits whose underlying graph is planar. In particular, we prove an $\Omega(n\log n)$ lower bound on the size of planar arithmetic circuits computing explicit bilinear forms ... more >>>



previous PreviousNext next


ISSN 1433-8092 | Imprint