
PreviousNext
Random linear codes (RLCs) are well known to have nice combinatorial properties and near-optimal parameters in many different settings. However, getting explicit constructions matching the parameters of RLCs is challenging, and RLCs are hard to decode efficiently. This motivated several previous works to study the problem of partially derandomizing RLCs, ... more >>>
We describe a new family of symmetric error-correcting codes with low-density parity-check matrices (LDPC).
Our codes can be described in two seemingly different ways. First, in relation to Reed-Muller codes: our codes are functions on a subset of $\mathbb{F}^n$ whose restrictions to a prescribed set of affine lines has low ... more >>>
A simple, recently observed generalization of the classical Singleton bound to list-decoding asserts that rate $R$ codes are not list-decodable using list-size $L$ beyond an error fraction $\frac{L}{L+1} (1-R)$ (the Singleton bound being the case of $L=1$, i.e., unique decoding). We prove that in order to approach this bound for ... more >>>
PreviousNext