Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR23-179 | 18th November 2023
Ian Mertz

Reusing Space: Techniques and Open Problems

In the world of space-bounded complexity, there is a strain of results showing that space can, somewhat paradoxically, be used for multiple purposes at once. Touchstone results include Barrington’s Theorem and the recent line of work on catalytic computing. We refer to such techniques, in contrast to the usual notion ... more >>>


TR23-178 | 16th November 2023
Louis Golowich, Tali Kaufman

NLTS Hamiltonians and Strongly-Explicit SoS Lower Bounds from Low-Rate Quantum LDPC Codes

Recent constructions of the first asymptotically good quantum LDPC (qLDPC) codes led to two breakthroughs in complexity theory: the NLTS (No Low-Energy Trivial States) theorem (Anshu, Breuckmann, and Nirkhe, STOC'23), and explicit lower bounds against a linear number of levels of the Sum-of-Squares (SoS) hierarchy (Hopkins and Lin, FOCS'22).

In ... more >>>


TR23-177 | 18th November 2023
Kiran Kedlaya, Swastik Kopparty

On the degree of polynomials computing square roots mod p

Revisions: 1

For an odd prime $p$, we say $f(X) \in {\mathbb F}_p[X]$ computes square roots in $\mathbb F_p$ if, for all nonzero perfect squares $a \in \mathbb F_p$, we have $f(a)^2 = a$.

When $p \equiv 3$ mod $4$, it is well known that $f(X) = X^{(p+1)/4}$ computes square ... more >>>



previous PreviousNext next


ISSN 1433-8092 | Imprint