Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR25-036 | 29th March 2025
Siddharth Iyer

Lifting for Arbitrary Gadgets

We prove a sensitivity-to-communication lifting theorem for arbitrary gadgets. Given functions $f: \{0,1\}^n\to \{0,1\}$ and $g : \mathcal{X} \times \mathcal{Y}\to \{0,1\}$, denote $f\circ g(x,y) := f(g(x_1,y_1),\ldots,g(x_n,y_n))$. We show that for any $f$ with sensitivity $s$ and any $g$,
\[D(f\circ g) \geq s\cdot \bigg(\frac{\Omega(D(g))}{\log rk(g)} - \log rk(g)\bigg),\]
where ... more >>>


TR25-035 | 25th March 2025
Abhibhav Garg, Rafael Mendes de Oliveira, Nitin Saxena

Primes via Zeros: Interactive Proofs for Testing Primality of Natural Classes of Ideals

A central question in mathematics and computer science is the question of determining whether a given ideal $I$ is prime, which geometrically corresponds to the zero set of $I$, denoted $Z(I)$, being irreducible. The case of principal ideals (i.e., $m=1$) corresponds to the more familiar absolute irreducibility testing of polynomials, ... more >>>


TR25-034 | 20th March 2025
Neha Kuntewar, Jayalal Sarma

Range Avoidance in Boolean Circuits via Turan-type Bounds

Given a circuit $C : \{0,1\}^n \to \{0,1\}^m$ from a circuit class $F$, with $m > n$, finding a $y \in \{0,1\}^m$ such that $\forall x \in \{0,1\}^n$, $C(x) \ne y$, is the range avoidance problem (denoted by $F$-AVOID). It is known that deterministic polynomial time algorithms (even with access ... more >>>



previous PreviousNext next


ISSN 1433-8092 | Imprint