Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR23-115 | 8th August 2023
Abhranil Chatterjee, Mrinal Kumar, Ben Lee Volk

Determinants vs. Algebraic Branching Programs

Revisions: 1

We show that for every homogeneous polynomial of degree $d$, if it has determinantal complexity at most $s$, then it can be computed by a homogeneous algebraic branching program (ABP) of size at most $O(d^5s)$. Moreover, we show that for \textit{most} homogeneous polynomials, the width of the resulting homogeneous ABP ... more >>>


TR23-114 | 8th August 2023
Lijie Chen, William Hoza, Xin Lyu, Avishay Tal, Hongxun Wu

Weighted Pseudorandom Generators via Inverse Analysis of Random Walks and Shortcutting

A weighted pseudorandom generator (WPRG) is a generalization of a pseudorandom generator (PRG) in which, roughly speaking, probabilities are replaced with weights that are permitted to be positive or negative. We present new explicit constructions of WPRGs that fool certain classes of standard-order read-once branching programs. In particular, our WPRGs ... more >>>


TR23-113 | 8th August 2023
Justin Holmgren, Ron Rothblum

Linear-Size Boolean Circuits for Multiselection

We study the circuit complexity of the multiselection problem: given an input string $x \in \{0,1\}^n$ along with indices $i_1,\dots,i_q \in [n]$, output $(x_{i_1},\dots,x_{i_q})$. A trivial lower bound for the circuit size is the input length $n + q \cdot \log(n)$, but the straightforward construction has size $\Theta(q \cdot n)$.

... more >>>


previous PreviousNext next


ISSN 1433-8092 | Imprint