Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR23-127 | 30th August 2023
Irit Dinur, Siqi Liu, Rachel Zhang

New Codes on High Dimensional Expanders

We describe a new family of symmetric error-correcting codes with low-density parity-check matrices (LDPC).

Our codes can be described in two seemingly different ways. First, in relation to Reed-Muller codes: our codes are functions on a subset of $\mathbb{F}^n$ whose restrictions to a prescribed set of affine lines has low ... more >>>


TR23-126 | 25th August 2023
Omar Alrabiah, Venkatesan Guruswami, Ray Li

AG codes have no list-decoding friends: Approaching the generalized Singleton bound requires exponential alphabets

A simple, recently observed generalization of the classical Singleton bound to list-decoding asserts that rate $R$ codes are not list-decodable using list-size $L$ beyond an error fraction $\frac{L}{L+1} (1-R)$ (the Singleton bound being the case of $L=1$, i.e., unique decoding). We prove that in order to approach this bound for ... more >>>


TR23-125 | 25th August 2023
Omar Alrabiah, Venkatesan Guruswami, Ray Li

Randomly punctured Reed-Solomon codes achieve list-decoding capacity over linear-sized fields

Reed-Solomon codes are a classic family of error-correcting codes consisting of evaluations of low-degree polynomials over a finite field on some sequence of distinct field elements. They are widely known for their optimal unique-decoding capabilities, but their list-decoding capabilities are not fully understood. Given the prevalence of Reed-Solomon codes, a ... more >>>



previous PreviousNext next


ISSN 1433-8092 | Imprint