
PreviousNext
Relativization is one of the most fundamental concepts in complexity theory, which explains the difficulty of resolving major open problems. In this paper, we propose a weaker notion of relativization called *bounded relativization*. For a complexity class $C$, we say that a statement is *$C$-relativizing* if the statement holds relative ... more >>>
We establish new separations between the power of monotone and general (non-monotone) Boolean circuits:
- For every $k \geq 1$, there is a monotone function in ${\rm AC^0}$ (constant-depth poly-size circuits) that requires monotone circuits of depth $\Omega(\log^k n)$. This significantly extends a classical result of Okol'nishnikova (1982) and Ajtai ... more >>>
Recent work has shown that many of the standard TFNP classes — such as PLS, PPADS, PPAD, SOPL, and EOPL — have corresponding proof systems in propositional proof complexity, in the sense that a total search problem is in the class if and only if the totality of the problem ... more >>>
PreviousNext