
PreviousNext
We initiate the study of generalized $AC^0$ circuits comprised of arbitrary unbounded fan-in gates which only need to be constant over inputs of Hamming weight $\ge k$ (up to negations of the input bits), which we denote $GC^0(k)$. The gate set of this class includes biased LTFs like the $k$-$OR$ ... more >>>
The role of symmetry in Boolean functions $f:\{0,1\}^n \to \{0,1\}$ has been extensively studied in complexity theory.
For example, symmetric functions, that is, functions that are invariant under the action of $S_n$ is an important class of functions in the study of Boolean functions.
A function $f:\{0,1\}^n \to \{0,1\}$ ...
more >>>
We give new bounds on the cosystolic expansion constants of several families of high dimensional expanders, and the known coboundary expansion constants of order complexes of homogeneous geometric lattices, including the spherical building of $SL_n(F_q)$. The improvement applies to the high dimensional expanders constructed by Lubotzky, Samuels and Vishne, and ... more >>>
PreviousNext