Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR23-011 | 13th February 2023
Mikhail Dektiarev, Nikolay Vereshchagin

Half-duplex communication complexity with adversary? can be less than the classical communication complexity

Revisions: 1

Half-duplex communication complexity with adversary was defined in [Hoover, K., Impagliazzo, R., Mihajlin, I., Smal, A. V. Half-Duplex Communication Complexity, ISAAC 2018.] Half-duplex communication protocols generalize classical protocols defined by Andrew Yao in [Yao, A. C.-C. Some Complexity Questions Related to Distributive Computing (Preliminary Report), STOC 1979]. It has been ... more >>>


TR23-010 | 13th February 2023
Per Austrin, Kilian Risse

Sum-of-Squares Lower Bounds for the Minimum Circuit Size Problem

We prove lower bounds for the Minimum Circuit Size Problem (MCSP) in the Sum-of-Squares (SoS) proof system. Our main result is that for every Boolean function $f: \{0,1\}^n \rightarrow \{0,1\}$, SoS requires degree $\Omega(s^{1-\epsilon})$ to prove that $f$ does not have circuits of size $s$ (for any $s > \text{poly}(n)$). ... more >>>


TR23-009 | 14th February 2023
Hervé Fournier, Nutan Limaye, Guillaume Malod, Srikanth Srinivasan, Sébastien Tavenas

Towards Optimal Depth-Reductions for Algebraic Formulas

Classical results of Brent, Kuck and Maruyama (IEEE Trans. Computers 1973) and Brent (JACM 1974) show that any algebraic formula of size s can be converted to one of depth O(log s) with only a polynomial blow-up in size. In this paper, we consider a fine-grained version of this result ... more >>>



previous PreviousNext next


ISSN 1433-8092 | Imprint