Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR23-087 | 9th June 2023
Benny Applebaum, Oded Nir, Benny Pinkas

How to Recover a Secret with $O(n)$ Additions

Revisions: 2

Threshold cryptography is typically based on the idea of secret-sharing a private-key $s\in F$ ``in the exponent'' of some cryptographic group $G$, or more generally, encoding $s$ in some linearly homomorphic domain. In each invocation of the threshold system (e.g., for signing or decrypting) an ``encoding'' of the secret is ... more >>>


TR23-086 | 8th June 2023
Dmitry Sokolov

Random $(\log n)$-CNF are Hard for Cutting Planes (Again)

The random $\Delta$-CNF model is one of the most important distribution over $\Delta\text{-}\mathrm{SAT}$ instances. It is closely connected to various areas of computer science, statistical physics, and is a benchmark for satisfiability algorithms. Fleming, Pankratov, Pitassi, and Robere and independently Hrubes and Pudlak showed that when $\Delta = \Theta(\log n)$, ... more >>>


TR23-085 | 4th June 2023
Ari Karchmer

Average-Case PAC-Learning from Nisan's Natural Proofs

Revisions: 2

Carmosino et al. (2016) demonstrated that natural proofs of circuit lower bounds imply algorithms for learning circuits with membership queries over the uniform distribution. Indeed, they exercised this implication to obtain a quasi-polynomial time learning algorithm for ${AC}^0[p]$ circuits, for any prime $p$, by leveraging the existing natural proofs from ... more >>>



previous PreviousNext next


ISSN 1433-8092 | Imprint