Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR23-034 | 24th March 2023
Oded Goldreich

On teaching the approximation method for circuit lower bounds

Revisions: 1

This text provides a basic presentation of the the approximation method of Razborov (Matematicheskie Zametki, 1987) and its application by Smolensky (19th STOC, 1987) for proving lower bounds on the size of ${\cal AC}^0[p]$-circuits that compute sums mod~$q$ (for primes $q\neq p$).
The textbook presentations of the latter result ... more >>>


TR23-033 | 24th March 2023
Sumanta Ghosh, Prahladh Harsha, Simao Herdade, Mrinal Kumar, Ramprasad Saptharishi

Fast Numerical Multivariate Multipoint Evaluation

Revisions: 1

We design nearly-linear time numerical algorithms for the problem of multivariate multipoint evaluation over the fields of rational, real and complex numbers. We consider both \emph{exact} and \emph{approximate} versions of the algorithm. The input to the algorithms are (1) coefficients of an $m$-variate polynomial $f$ with degree $d$ in each ... more >>>


TR23-032 | 24th March 2023
Vishwas Bhargava, Shubhangi Saraf, Ilya Volkovich

Linear Independence, Alternants and Applications


We develop a new technique for analyzing linear independence of multivariate polynomials. One of our main technical contributions is a \emph{Small Witness for Linear Independence} (SWLI) lemma which states the following.
If the polynomials $f_1,f_2, \ldots, f_k \in \F[X]$ over $X=\{x_1, \ldots, x_n\}$ are $\F$-linearly independent then there exists ... more >>>



previous PreviousNext next


ISSN 1433-8092 | Imprint