It is well-known that randomized communication protocols are more powerful than deterministic protocols. In particular the Equality function requires $\Omega(n)$ deterministic communication complexity but has efficient randomized protocols. Previous work of Chattopadhyay, Lovett and Vinyals shows that randomized communication is strictly stronger than what can be solved by deterministic protocols ... more >>>
We prove super-polynomial lower bounds for low-depth arithmetic circuits using the shifted partials measure [Gupta-Kamath-Kayal-Saptharishi, CCC 2013], [Kayal, ECCC 2012] and the affine projections of partials measure [Garg-Kayal-Saha, FOCS 2020], [Kayal-Nair-Saha, STACS 2016]. The recent breakthrough work of Limaye, Srinivasan and Tavenas [FOCS 2021] proved these lower bounds by proving ... more >>>
We give a deterministic white-box algorithm to estimate the expectation of a read-once branching program of length $n$ and width $w$ in space
$$\tilde{O}\left(\log n+\sqrt{\log n}\cdot\log w\right).$$
In particular, we obtain an almost optimal space $\tilde{O}(\log n)$ derandomization of programs up to width $w=2^{\sqrt{\log n}}$.
Previously, ...
more >>>