Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR22-119 | 24th August 2022
Shuichi Hirahara

NP-Hardness of Learning Programs and Partial MCSP

A long-standing open question in computational learning theory is to prove NP-hardness of learning efficient programs, the setting of which is in between proper learning and improper learning. Ko (COLT'90, SICOMP'91) explicitly raised this open question and demonstrated its difficulty by proving that there exists no relativizing proof of NP-hardness ... more >>>


TR22-118 | 23rd August 2022
Huacheng Yu

Strong XOR Lemma for Communication with Bounded Rounds

In this paper, we prove a strong XOR lemma for bounded-round two-player randomized communication. For a function $f:\mathcal{X}\times \mathcal{Y}\rightarrow\{0,1\}$, the $n$-fold XOR function $f^{\oplus n}:\mathcal{X}^n\times \mathcal{Y}^n\rightarrow\{0,1\}$ maps $n$ input pairs $(X_1,\ldots,X_n,Y_1,\ldots,Y_n)$ to the XOR of the $n$ output bits $f(X_1,Y_1)\oplus \cdots \oplus f(X_n, Y_n)$. We prove that if every ... more >>>


TR22-117 | 23rd August 2022
Ronen Shaltiel, Jad Silbak

Error Correcting Codes that Achieve BSC Capacity Against Channels that are Poly-Size Circuits

Guruswami and Smith (J. ACM 2016) considered codes for channels that are poly-size circuits which modify at most a $p$-fraction of the bits of the codeword. This class of channels is significantly stronger than Shannon's binary symmetric channel (BSC), but weaker than Hamming's channels which are computationally unbounded.
Guruswami and ... more >>>



previous PreviousNext next


ISSN 1433-8092 | Imprint