Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR21-178 | 3rd December 2021
Srinivasan Arunachalam, Oded Regev, Penghui Yao

On the Gaussian surface area of spectrahedra

We show that for sufficiently large $n\geq 1$ and $d=C n^{3/4}$ for some universal constant $C>0$, a random spectrahedron with matrices drawn from Gaussian orthogonal ensemble has Gaussian surface area $\Theta(n^{1/8})$ with high probability.

more >>>

TR21-177 | 22nd November 2021
Vincent Cohen-Addad, Karthik C. S., Euiwoong Lee

Johnson Coverage Hypothesis: Inapproximability of k-means and k-median in $\ell_p$-metrics

k-median and k-means are the two most popular objectives for clustering algorithms. Despite intensive effort, a good understanding of the approximability of these objectives, particularly in $\ell_p$-metrics, remains a major open problem. In this paper, we significantly improve upon the hardness of approximation factors known in literature for these objectives ... more >>>


TR21-176 | 30th November 2021
Theodoros Papamakarios

A super-polynomial separation between resolution and cut-free sequent calculus

We show a quadratic separation between resolution and cut-free sequent calculus width. We use this gap to get, for the first time, first, a super-polynomial separation between resolution and cut-free sequent calculus for refuting CNF formulas, and secondly, a quadratic separation between resolution width and monomial space in polynomial calculus ... more >>>



previous PreviousNext next


ISSN 1433-8092 | Imprint