Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR21-172 | 1st December 2021
Robert Andrews, Michael Forbes

Ideals, Determinants, and Straightening: Proving and Using Lower Bounds for Polynomial Ideals

We show that any nonzero polynomial in the ideal generated by the $r \times r$ minors of an $n \times n$ matrix $X$ can be used to efficiently approximate the determinant. Specifically, for any nonzero polynomial $f$ in this ideal, we construct a small depth-three $f$-oracle circuit that approximates the ... more >>>


TR21-171 | 2nd December 2021
Bruno Pasqualotto Cavalar, Zhenjian Lu

Algorithms and Lower Bounds for Comparator Circuits from Shrinkage

Comparator circuits are a natural circuit model for studying bounded fan-out computation whose power sits between nondeterministic branching programs and general circuits. Despite having been studied for nearly three decades, the first superlinear lower bound against comparator circuits was proved only recently by Gál and Robere (ITCS 2020), who established ... more >>>


TR21-170 | 25th November 2021
Reyad Abed Elrazik, Robert Robere, Assaf Schuster, Gal Yehuda

Pseudorandom Self-Reductions for NP-Complete Problems

A language $L$ is random-self-reducible if deciding membership in $L$ can be reduced (in polynomial time) to deciding membership in $L$ for uniformly random instances. It is known that several "number theoretic" languages (such as computing the permanent of a matrix) admit random self-reductions. Feigenbaum and Fortnow showed that NP-complete ... more >>>



previous PreviousNext next


ISSN 1433-8092 | Imprint