Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR22-016 | 15th February 2022
Artur Ignatiev, Ivan Mihajlin, Alexander Smal

Super-cubic lower bound for generalized Karchmer-Wigderson games

Revisions: 1

In this paper, we prove a super-cubic lower bound on the size of a communication protocol for generalized Karchmer-Wigderson game for some explicit function $f: \{0,1\}^n\to \{0,1\}^{\log n}$. Lower bounds for original Karchmer-Wigderson games correspond to De Morgan formula lower bounds, thus the best known size lower bound is cubic. ... more >>>


TR22-015 | 12th February 2022
Mika Göös, Stefan Kiefer, Weiqiang Yuan

Lower Bounds for Unambiguous Automata via Communication Complexity

We use results from communication complexity, both new and old ones, to prove lower bounds for unambiguous finite automata (UFAs). We show three results.

$\textbf{Complement:}$ There is a language $L$ recognised by an $n$-state UFA such that the complement language $\overline{L}$ requires NFAs with $n^{\tilde{\Omega}(\log n)}$ states. This improves on ... more >>>


TR22-014 | 8th February 2022
Joshua Cook, Dana Moshkovitz

Tighter MA/1 Circuit Lower Bounds From Verifier Efficient PCPs for PSPACE

Revisions: 3

We prove for some constant $a > 1$, for all $k \leq a$,
$$\mathbf{MATIME}[n^{k + o(1)}] / 1 \not \subset \mathbf{SIZE}[O(n^{k})],$$
for some specific $o(1)$ function. This improves on the Santhanam lower bound, which says there exists constant $c$ such that for all $k > 1$:
$$\mathbf{MATIME}[n^{c k}] / 1 ... more >>>



previous PreviousNext next


ISSN 1433-8092 | Imprint