Consider a homogeneous degree $d$ polynomial $f = T_1 + \cdots + T_s$, $T_i = g_i(\ell_{i,1}, \ldots, \ell_{i, m})$ where $g_i$'s are homogeneous $m$-variate degree $d$ polynomials and $\ell_{i,j}$'s are linear polynomials in $n$ variables. We design a (randomized) learning algorithm that given black-box access to $f$, computes black-boxes for ... more >>>
Since they were first introduced by Schulman (STOC 1993), the construction of tree codes remained an elusive open problem. The state-of-the-art construction by Cohen, Haeupler and Schulman (STOC 2018) has constant distance and $(\log n)^{e}$ colors for some constant $e > 1$ that depends on the distance, where $n$ is ... more >>>
The hardness vs.~randomness paradigm aims to explicitly construct pseudorandom generators $G:\{0,1\}^r \to \{0,1\}^m$ that fool circuits of size $m$, assuming the existence of explicit hard functions. A ``high-end PRG'' with seed length $r=O(\log m)$ (implying BPP=P) was achieved in a seminal work of Impagliazzo and Wigderson (STOC 1997), assuming \textsc{the ... more >>>