This paper aims to derandomize the following problems in the smoothed analysis of Spielman and Teng. Learn Disjunctive Normal Form (DNF), invert Fourier Transforms (FT), and verify small circuits' unsatisfiability. Learning algorithms must predict a future observation from the only $m$ i.i.d. samples of a fixed but unknown joint-distribution $P(G(x),y)$ ... more >>>
We show that for sufficiently large $n\geq 1$ and $d=C n^{3/4}$ for some universal constant $C>0$, a random spectrahedron with matrices drawn from Gaussian orthogonal ensemble has Gaussian surface area $\Theta(n^{1/8})$ with high probability.
more >>>k-median and k-means are the two most popular objectives for clustering algorithms. Despite intensive effort, a good understanding of the approximability of these objectives, particularly in $\ell_p$-metrics, remains a major open problem. In this paper, we significantly improve upon the hardness of approximation factors known in literature for these objectives ... more >>>