Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR22-036 | 10th March 2022
Agnes Schleitzer, Olaf Beyersdorff

Classes of Hard Formulas for QBF Resolution

Revisions: 1

To date, we know only a few handcrafted quantified Boolean formulas (QBFs) that are hard for central QBF resolution systems such as Q and QU, and only one specific QBF family to separate Q and QU.

Here we provide a general method to construct hard formulas for Q and ... more >>>


TR22-035 | 7th March 2022
Nataly Brukhim, Daniel Carmon, Irit Dinur, Shay Moran, Amir Yehudayoff

A Characterization of Multiclass Learnability

A seminal result in learning theory characterizes the PAC learnability of binary classes through the Vapnik-Chervonenkis dimension. Extending this characterization to the general multiclass setting has been open since the pioneering works on multiclass PAC learning in the late 1980s. This work resolves this problem: we characterize multiclass PAC learnability ... more >>>


TR22-034 | 3rd March 2022
Chin Ho Lee, Edward Pyne, Salil Vadhan

Fourier Growth of Regular Branching Programs

We analyze the Fourier growth, i.e. the $L_1$ Fourier weight at level $k$ (denoted $L_{1,k}$), of read-once regular branching programs.
We prove that every read-once regular branching program $B$ of width $w \in [1,\infty]$ with $s$ accepting states on $n$-bit inputs must have its $L_{1,k}$ bounded by
$$
\min\left\{ ... more >>>



previous PreviousNext next


ISSN 1433-8092 | Imprint