Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR22-027 | 22nd February 2022
Guy Blanc, Dean Doron

New Near-Linear Time Decodable Codes Closer to the GV Bound

Revisions: 1

We construct a family of binary codes of relative distance $\frac{1}{2}-\varepsilon$ and rate $\varepsilon^{2} \cdot 2^{-\log^{\alpha}(1/\varepsilon)}$ for $\alpha \approx \frac{1}{2}$ that are decodable, probabilistically, in near linear time. This improves upon the rate of the state-of-the-art near-linear time decoding near the GV bound due to Jeronimo, Srivastava, and Tulsiani, who ... more >>>


TR22-026 | 17th February 2022
James Cook, Ian Mertz

Trading Time and Space in Catalytic Branching Programs

An $m$-catalytic branching program (Girard, Koucky, McKenzie 2015) is a set of $m$ distinct branching programs for $f$ which are permitted to share internal (i.e. non-source non-sink) nodes. While originally introduced as a non-uniform analogue to catalytic space, this also gives a natural notion of amortized non-uniform space complexity for ... more >>>


TR22-025 | 15th February 2022
Oliver Korten

Efficient Low-Space Simulations From the Failure of the Weak Pigeonhole Principle

Revisions: 3

A recurring challenge in the theory of pseudorandomness and circuit complexity is the explicit construction of ``incompressible strings,'' i.e. finite objects which lack a specific type of structure or simplicity. In most cases, there is an associated NP search problem which we call the ``compression problem,'' where we are given ... more >>>



previous PreviousNext next


ISSN 1433-8092 | Imprint