
PreviousNext
A language $L$ is random-self-reducible if deciding membership in $L$ can be reduced (in polynomial time) to deciding membership in $L$ for uniformly random instances. It is known that several "number theoretic" languages (such as computing the permanent of a matrix) admit random self-reductions. Feigenbaum and Fortnow showed that NP-complete ... more >>>
Hypercontractivity is one of the most powerful tools in Boolean function analysis. Originally studied over the discrete hypercube, recent years have seen increasing interest in extensions to settings like the $p$-biased cube, slice, or Grassmannian, where variants of hypercontractivity have found a number of breakthrough applications including the resolution of ... more >>>
We prove hypercontractive inequalities on high dimensional expanders. As in the settings of the p-biased hypercube, the symmetric group, and the Grassmann scheme, our inequalities are effective for global functions, which are functions that are not significantly affected by a restriction of a small set of coordinates. As applications, we ... more >>>
PreviousNext