Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR21-072 | 23rd May 2021
Pranjal Dutta, Gorav Jindal, Anurag Pandey, Amit Sinhababu

Arithmetic Circuit Complexity of Division and Truncation

Given polynomials $f,g,h\,\in \mathbb{F}[x_1,\ldots,x_n]$ such that $f=g/h$, where both $g$ and $h$ are computable by arithmetic circuits of size $s$, we show that $f$ can be computed by a circuit of size $\poly(s,\deg(h))$. This solves a special case of division elimination for high-degree circuits (Kaltofen'87 \& WACT'16). The result ... more >>>


TR21-071 | 16th May 2021
Samuel Epstein

On the Algorithmic Content of Quantum Measurements

We show that given a quantum measurement, for an overwhelming majority of pure states, no meaningful information is produced. This is independent of the number of outcomes of the quantum measurement. Due to conservation inequalities, such random noise cannot be processed into coherent data.

more >>>

TR21-070 | 13th May 2021
Shuo Pang

SOS lower bound for exact planted clique

We prove a SOS degree lower bound for the planted clique problem on Erd{\"o}s-R\'enyi random graphs $G(n,1/2)$. The bound we get is degree $d=\Omega(\epsilon^2\log n/\log\log n)$ for clique size $\omega=n^{1/2-\epsilon}$, which is almost tight. This improves the result of \cite{barak2019nearly} on the ``soft'' version of the problem, where the family ... more >>>



previous PreviousNext next


ISSN 1433-8092 | Imprint