Weizmann Logo
ECCC
Electronic Colloquium on Computational Complexity

Under the auspices of the Computational Complexity Foundation (CCF)

Login | Register | Classic Style



LATEST > REPORTS:
RSS-Feedprevious PreviousNext next

TR21-032 | 5th March 2021
Justin Holmgren, Alex Lombardi, Ron Rothblum

Fiat-Shamir via List-Recoverable Codes (or: Parallel Repetition of GMW is not Zero-Knowledge)

Shortly after the introduction of zero-knowledge proofs, Goldreich, Micali and Wigderson (CRYPTO '86) demonstrated their wide applicability by constructing zero-knowledge proofs for the NP-complete problem of graph 3-coloring. A long-standing open question has been whether parallel repetition of their protocol preserves zero knowledge. In this work, we answer this question ... more >>>


TR21-031 | 3rd March 2021
Vaibhav Krishan

Upper Bound for Torus Polynomials

We prove that all functions that have low degree torus polynomials approximating them with small error also have $MidBit^+$ circuits computing them. This serves as a partial converse to the result that all $ACC$ functions have low degree torus polynomials approximating them with small error, by Bhrushundi, Hosseini, Lovett and ... more >>>


TR21-030 | 2nd March 2021
Shuichi Hirahara, Rahul Ilango, Bruno Loff

Hardness of Constant-round Communication Complexity

How difficult is it to compute the communication complexity of a two-argument total Boolean function $f:[N]\times[N]\to\{0,1\}$, when it is given as an $N\times N$ binary matrix? In 2009, Kushilevitz and Weinreb showed that this problem is cryptographically hard, but it is still open whether it is NP-hard.

In this ... more >>>



previous PreviousNext next


ISSN 1433-8092 | Imprint