
PreviousNext
A natural problem in high-dimensional inference is to decide if a classifier $f:\mathbb{R}^n \rightarrow \{-1,1\}$ depends on a small number of linear directions of its input data. Call a function $g: \mathbb{R}^n \rightarrow \{-1,1\}$, a linear $k$-junta if it is completely determined by some $k$-dimensional subspace of the input space. ... more >>>
Leveraging tools of De, Mossel, and Neeman [FOCS, 2019], we show two different results pertaining to the tolerant testing of juntas. Given black-box access to a Boolean function $f:\{\pm1\}^{n} \to \{\pm1\}$ we give a poly$(k, \frac{1}{\varepsilon})$ query algorithm that distinguishes between functions that are $\gamma$-close to $k$-juntas and $(\gamma+\varepsilon)$-far from ... more >>>
In this work we prove that there is a function $f \in \textrm{E}^\textrm{NP}$ such that, for every sufficiently large $n$ and $d = \sqrt{n}/\log n$, $f_n$ ($f$ restricted to $n$-bit inputs) cannot be $(1/2 + 2^{-d})$-approximated by $\textrm{F}_2$-polynomials of degree $d$. We also observe that a minor improvement ...
more >>>
PreviousNext